Auxin and the Arabidopsis thaliana gynoecium
نویسندگان
چکیده
منابع مشابه
Auxin and the Arabidopsis thaliana gynoecium.
Recent research is beginning to reveal how intricate networks of hormones and transcription factors coordinate the complex patterning of the gynoecium, the female reproductive structure of flowering plants. This review summarizes recent advances in understanding of how auxin biosynthesis, transport, and responses together generate specific gynoecial domains. This review also highlights areas wh...
متن کاملAuxin and ETTIN in Arabidopsis gynoecium morphogenesis.
The phytohormone auxin has wide-ranging effects on growth and development. Genetic and physiological approaches implicate auxin flux in determination of floral organ number and patterning. This study uses a novel technique of transiently applying a polar auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), to developing Arabidopsis flowers to further characterize the role of auxin in o...
متن کاملAuxin, actin and growth of the Arabidopsis thaliana primary root.
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organiz...
متن کاملAuxin and the developing root of Arabidopsis thaliana
The plant hormone auxin has long been known to play a crucial role in plant growth and development, but how it affects so many different processes has remained a mystery. Recent evidence from genetic and molecular studies has begun to reveal a possible mechanism for auxin action. In this article we will present an overview with specific emphasis on auxin’s role in roots of Arabidopsis thaliana,...
متن کاملThe effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium
The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Botany
سال: 2013
ISSN: 1460-2431,0022-0957
DOI: 10.1093/jxb/ert099